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:New joint probability distributions of several normalized structure factors are obtained by fixing 
the crystal structure and allowing the indices to range uniformly but not independently over the 
vectors in reciprocal space. From these the expected values of the product of powers of several 
structure factors are found. A subsequent integrating process, together with an important identity, 
then yield greatly improved formulas for phase determination by means of which the phases of the 
structure factors are obtainable from the magnitudes of the structure factors alone. Owing to the 
greater power of these formulas the data are used more efficiently, and complex structures may be 
more readily analyzed than heretofore. 

1. Introduction 

Joint probability distributions of several structure 
factors were first derived in our Monograph I (Haupt- 
man & Karle, 1953). These were obtained by fixing 
the vectors hi, h2, . . .  and allowing the atomic co- 
ordinates in the asymmetric unit to range uniformly 
and independently throughout the unit cell. In this 
way the probability that  the sign of a structure factor 
be plus was determined on the basis that  the magni- 
tudes, and possibly the signs, of a certain set of struc- 
ture factors are known. From these probabihties 
phase determining formulas were derived and a 
procedure for phase determination was inferred. These 
formulas had, however, only probable vahdity. The 
question naturally arose whether there exist formulas 
which, under suitable circumstances, have exact, 
rather than merely probable, validity. 

A partial affirmative answer to this question had 
already been given by Hughes (1953) and subsequently 
by Cochran (1954) and Bullough & Cruickshank 
(1955). A more complete answer was obtained by us 
using a unified algebraic approach (Hauptman & 
Karle, 1957). The algebraic approach leads in general 
to formulas which are the exact analogues of the prob- 
ability formulas previously derived. In addition, new 
formulas were found in this way which surpassed the 
others in that  the phases of all structure factors could 
be more readily obtained by means of explicit ex- 
pressions in terms of the magnitudes of the structure 
factors alone. For their exact validity the algebraic 
formulas require that  the structure consist of N 
identical point atoms, a restriction of no important 
consequence for eentrosymmetric crystals, and that  a 
mild condition concerning the rational independence 
of atomic coordinates be fulfilled. Now the question 
arises whether the probabihty methods are capable of 
yielding the more powerful algebraic formulas. 

The present paper not only gives an affirmative 

answer to this question but generahzes the algebraic 
formulas in a way which should prove to be of im- 
portant practical significance. Here, too, the condition 
concerning the rational independence of atomic co- 
ordinates (Hauptman & Karle, 1957) must be ful- 
filled. In this paper we introduce the concept of the 
joint probability distribution of several structure 
factors, based upon the conditions that  the crystal 
structure be fixed and that  the vector k be permitted 
to range uniformly over all vectors in reciprocal space. 
This is in contrast to the previously obtained joint 
probability distributions in which the indices were 
fixed and the atomic coordinates were uniformly and 
independently distributed. The latter distributions 
answered the question: 'What is the probability that  
the sign of a structure factor be plus ?'. The distribu- 
tions here obtained answer the question: 'What is the 
expected value or average over indices of specific 
combinations of the structure factors or their magni- 
tudes ?'. 

All phase-determining relations require for their 
successful application the collection of a very large 
number of data, and the formulas to be described in 
this paper are no exception. Because of their greater 
power, however, it is to be expected that  the present 
formulas will require fewer data than those derived 
previously. 

2. Phase-determining formulas  
We list here for ready reference all important phase- 
determining formulas derived in this paper. In these 
formulas the E's are the normahzed structure factors; 
p, q, r, and t are arbitrary real non-negative numbers; 
N is the number of atoms (assumed identical) in the 
unit cell; and /~ is the Gamma function. Although 
only the space group P1 is considered here, it will be 
clear that  the methods are applicable to all the space 
groups, non-centrosymmetric as well as centro- 
symmetric. 
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2.1. The basic formulas, B~,~ Be,~: Eh  = (8g)½N 

2(~+x)/2 ( P 2 1 )  2(p+1)/2p['(~_~) 
S~, 0: (IEklP)k = (---2~)--~ /"  - -  

( ( [Ek[  p -  IE[ p) [Eh+ uklq Eh+ ek)k 
× }, × 

8 ~  + 1152N 2 + . . . .  (]Eh+2klq+2~k 

2(27e)½N 
(2"1"1) B2,1: E2h = 

B2,0: E2h ---- --  
8~N3/~ 

2(~+q+2)/~ PqF ( ~ )  F ( ~  -~ ) 

: × ((IEklP--IElP)(IEh÷klq--IElq)~k 

+ 2 N ½ ( E ~ - I ) + R  2 , 

+ . . .  (2.1.4) 

where }E}~ = (}Ek}~)k a n d  

1 
R2 - 12N½ [2 ( p - 2 )  ( q - 2 ) E ~ - 3  (p~+4pq+q 2-  6 p - 6 q )  

× E ~ + 3  (p + q  + 2 ) ( p  + q - 4 ) ]  + . . . .  

Ba, o: Eh~Eh2Elal-la2 
(2~N)3/2 

× ( (IEk[ p -  IEI p ) (IEh~+k I q -  IEI q) (IEn~+k I ~ -  ]El~)~k ÷ R3,  
(2.1.3) 

where  
1 

_- __ -- 2)ElalEhl_la2 R a - ~ [ ¼ ( ( P - 2 ) E ~ E ~ + ( q  2 2 

+ ( r -  2) E~2Ei~_h~.) 

--¼ ( (p÷q)E~, 1÷ (P+ r)E~h2 

+ (q+r)E~_h~-- (p+q+r+2)) 

-- ½ ( Eh~Eh~_ ~h~ + Eh2E ea~_~ + E~_h~Eh~ + h2) ] + . . . .  

B3, o: (E~-½)E2h  
(2~N)3/~- 

x (([Ekl'--[EiP)([Eh+klq--[Elq)([Zh_klr--[E[~))k+Ra,, 

where  (2.1-3a) 

R3~ = - ~-~ ( ( p - 2 ) E g +  (q+r--4lE]h) 

- -¼( (2p+q  + r)E~ + (q + r)E~h--(p +q + r + 2)) 

--EhEah] + . . . .  

* This formula should be compared with (23) of Karle & 
Hauptman (1953). The discrepancy in the third terms of these 
two expressions is due to a numerical error in the computation 
of the third term of (20) in the earlier paper. 

× ((]Eh+k[P--IEIP) IEek[qE2k)~ + . . . .  (2-1-4a) 

(IE2k]q+2~k 

(2~)½N 
(2.1.2) B3, 2" ElalEla~ -- 

× ((]Ek]P--}E]p)]Enl+k]q]E,2+k]~Eh~+kE,2+k~k + Rh, 
(IEhl+klq+2 IEh2+k r + 2~k 

where (2-1-5) 

R5 Ehl+h~. Eha--h~ [4(pq÷qr÷q+r)E~l 
2N½ 8pN½ 

+4 (pr +qr +q + r)E~ +4(qr +q +r)E~_h2 

- p (p+4q+4r+6)-  4 q - 4 r ]  + . . . .  

N½ (Ek Eh+k JEkl p IEla+klq~k 
B2,2: Eh = (iEklP+21Ell+klq+2)k + . . . .  (2-1.6) 

The  n o t a t i o n  Bin, n means  t h a t  each con t r ibu to r  to  
the  average  which  appears  in the  cor responding  for- 
mu la  requires  a knowledge  of the  m a g n i t u d e s  of m 
normal ized  s t ruc tu re  fac tors  and  of the  signs of n of 
them.  W h e n  more  t h a n  one fo rmula  has  the  same Bin, ~ 
label,  i t  is seen t h a t  one is a special  case of the  other .  
W e  no te  t h a t  Z'2 of Monograph  I is r e la ted  to  t he  
special  case p = q = 0 of B2, ~ while  Za corresponds  to  
the  special  case p = 2, q = 0 of B2,1 (2.1.4a). 

I t  is ev iden t  t h a t  if t he  d a t a  are suf f ic ien t ly  ac- 
cura te  and  ex tens ive  t hen  the  larger  va lues  of p, q, r 
y ie ld  the  more useful  formulas ,  since t he  coefficients 
of the  respect ive  averages  will t h e n  be smaller .  

Tab le  1 
The values of 

Gn(t) = Seoxn2(x+D/2I' ( ~ - )  dx 

for various values of t and n. 

t n----0 n~-- 1 n ~ 2  

0 0.000 0.000 0-000 
1 2.122 1.023 0.673 
2 4.31 4.35 5.91 
3 7.46 12.33 26-44 
4 12.97 31.9 96.5 
5 24.1 82.7 329 
6 49.2 222 1110 

n - ~ 3  

0.000 
0.502 
9.01 

62.5 
314 

1384 
5755 



H. HAUPTMA:N AND J.  K A R L E  151 

2"2. The integrated formulas, Ira, 
We make the definition 

G n = G n ( t  ) i'tx"2(x+~)/e.Ffx+l)dx (2.2-0) 
=J0 \ - -2-]  ' 

and, using Simpson's Rule, find the entries listed in 
Table 1. Corresponding to the basic formulas Bin,, are 
the integrated formulas Im, n" 

11 (2.2.1) 
o: \ l o g  [Ekl/k-- 8N )" 

M) I~,o" Eeh O~ \ \ l o g  [Ek[ 

( ' E h + k l t -  1 M ) )  × \~--og ~E--h+----~ k ÷ 2N½(E~-I)+R;, (2"2"2) 

where 

\ .--U/ ' 

hence readily computed in terms of the entries in 
Table 1, while 

{Ek[t--1 
M = M(t) = ( l og  IEk[/i, 

is computed from the experimentally determined [Ek[ 
(rather than from the theoretical (2.2.1)). We note 
that the expression ([EIt-1)/log \El becomes inde- 

I 3 , 2 : E h ~ E h 2  = - - - -  

where 

R ~ = - -  

/[]Ek['--i 
(2~)½N \ \ l o g  ]Ekl 

( 2 ~ N )  3/s 
13, o" (E~-½)E2h = G] 

/ {IEk['-- 1 -M) ( [Eh+klt- 1 
x \ \ l o g  [Ek[ \log [Eh+k[ 

_M)(IE:-:I '-1 
\log IEh_k[ 

R' + 3a, 

M ) k  

(2.2.3a) 
where 

~ 3 a  ~ 2 (~+q+r+3)/2 

0 0 0 

pqrI"(~--~) I"(q2 ~1)  I " ( ~ )  R3adpdqdr 

is computed by means of Table 1. 

2(2~)½N 
I2 a : Eh 

G1 

× \ \ ~  ~ \ og IE:+:~I/ / k  + . . . .  

(/IE+'+="lt-l' E~+zk) k 
\log IEh+2k],) (2-2.4) 

2 (2~)½N 
I2, ~ : E~h G~ 

× \ \ ~  ~ \log lEntil + . . . .  

( {IEek]~ -- l ] E~k )k 
\log [E2k[] (2.2.4a) 

M) [Ehl+klt--1 [Eh2+klt--1 E kEh 
log [Ehl+k['log [Eh~+kl h~+ e+k/k +R~, 

IEhl+k[ - 1 IEh~+k[ t - I  2 E 2 \ 
• E h l + k  h 2 + k / k  \log ]Ehl+k I log [Eh2+kl 

/I" i" ¢' (p+l~ ~o~o,]o 2c'+')/2P/" \--~----] [Eh~+klq+~[Eh~.+kl"+2Rsdpdqdr)k 
/ lEhx+k[ t -  1 IEh~+k]t-- 1 E2 ~2 

Gl \ l~g  [-E-h-h~k['log [Eh.+~,[ n~+k'Jh~+t'/k 

terminate when [E[ = 1, and is therefore to be re- 
placed by its limit, namely t, as 1E I approaches unity. 

(2-2.5) 

(2uN)3/2 I3, o" EhlEh~.Ehl-h~. G~ 
/{IEkl e- 1 × \ 
(IEh~.+klt--1 

× \log IEh2+k[ 
where 

R 3 = 2 (p+q+r+3)/2 

o o o 

\log IEhl+k[ 

)} ' - M  + R3, (2-2.3) 
k 

× pqrI"(~ -~) F(q2-----~l ) ff(~)R3dpdqdr 

is easily computed from the entries in Table 1. 

is computed from Table 1. 

"/2, 2 : 

E h -~ 

N~//fEkf~- 1~ ([Eh+kl'-- 1 / \ 
\ \ log  JE,,/ \l-~g VEZ~/ EkEh+,,/~ + . . . .  

( (IEk[t-ll[IEh+k't-l'~'u'~2 )k 
\log IEkl/ \Fog ~E--h-~kl/~k~'h÷k (2"2"6) 

We note that each formula consists of a main term 
plus a remainder term of higher order in 1/N. Thus 
the remainder term is negligible if N is sufficiently 
large. In several of the formulas explicit expressions 
for the remainder terms have not been derived. In the 
case that t is chosen to be large (e.g. 5 or 6) and N 
is small, it may be necessary to obtain these remainder 
terms. This may be readily accomplished by the 
methods to be described. 
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The formulas obtained by the unified algebraic 
approach are the special cases of the basic formulas 
in which p, q, r = 0 or 2. Equations (2.1.5) and (2.2.5) 
are likely to be most useful if E h ~  and E ~  are linearly 
dependent (modulo 2), in which case k ranges over 
all vectors congruent modulo 2 to h~ (or he). I t  is 
understood that ,  in practice, the averages in the 
denominators of (2-1.4)-(2-1-6) and (2.2.4)-(2.2.6) are 
to be taken over the same vectors k which occur in 
the respective numerators. 

3. The  j o in t  p r o b a b i l i t y  d i s t r i b u t i o n s  

The method employed here is the same as tha t  devel- 
oped in Monograph I. Here, however, the mixed 
moments are computed by averaging over the indices 
rather than over the coordinates. Hence, although the 
machinery for obtaining the present joint distribu- 
tions has been described in Monograph I, these distri- 
butions constitute a new application of the general 
theory. 

For  a structure_consisting of N identical point atoms 
in space group P1 the normalized structure factor Ek 
is defined by means of 

2 ~'~:/2 
= 22 cos 2~k.  r~, (3.1) E~ ~ ~=~ 

where r1 is the position vector of the j t h  atom. Let 
k 0, k~, . . . ,  km be m + l  arbi t rary vectors in reciprocal 
space which are not necessarily independent. Denote 
by P(Xo, X~ . . . .  , Xm) the joint probabili ty distribu- 
tion of the m + l  normalized structure factors 
Ek0, Ek~ . . . .  Ek~ as the k~ range uniformly (but not 
necessarily independently) through reciprocal space, 
i.e. P(X0, X~, . . . ,  X~)dXodX~ . . . dXm is the prob- 
ability tha t  E ~  lie between X~ and X ~ + d X ,  v = 
0, 1, . . . ,  m. Denote by P($0, ~e, . . . ,  ~em) the joint 
probabili ty distribution of Sk~ = 2 cos 2~k~.r], v = 
0, 1 , . . . , m ,  where r~ is a fixed vector and the k~ 
range uniformly through reciprocal space. Then, by 
a well known fundamental  theorem of probability 
theory (e.g. pp. 30, 31 of Monograph I), we have 

P(X°'XI' "'" Xm) V" 11 l ~_~.. f ~ , , o ~ , m + l  X 
- - - c o  

exp - X~x~ 1-I q(xo, xl ,  . . . ,  Xm)dxodx~.  . .dxm , 
= ]=1 

(3.2) 
where 

q(X0'  Xl '  " ' ' '  Xrn) = _ £ ' "  _ ~:O, ~1, " ' ' ,  ~:m) 

i ~ ~x~) d~od~ ~ d~r~ (3.3) x exp ~-~ . . . .  
v ~ 0  

Following Monograph I, p. 32, we find 

q(xo, x~, . . . ,  x,D = _ £ . .  (~o, ~ ,  . . . ,  ~m) 1 +-N-~ × 

~ $ ~ - 2 - 7 - N  ~ ~ "  ~x~ + . . . .  (3.4) v=0 3"f/V3/2 \v=0  

each term of which has the form of a mixed moment 

L f f ~ 0 ~ . . . ~ , , ~  = " .  0, ~ ,  . . . ,  $ , 3  

× so~a°k~'sl . . . .  • ~}~nd~od~l. • d~m (3.5) 

Interpret ing (3"5) as the expected value, or average, 
of ~ o ~  ~ o ~ . . . ~m,  we conclude tha t  

/ ~ 0 ~  e~,~\~ , (3"6) 
~ 0 2 1  • • • 2 m  = \ ~ 0  ~ 1  • • • K m  / K 0 ,  k 1 . . . . .  k m 

where 
$ , , = 2 c o s 2 z k ~ . r #  u = 0 , 1 , . . . , m .  (3.7) 

We note that ,  in contrast to the mixed moments ob- 
tained previously in Monograph I, (3.6) is computed 
by fixing the atomic coordinates r] and averaging 
over the vectors k~, u = 0, 1, . . . ,  m. The mixed mo- 
ments in this paper are evaluated on the basis of the 
rational independence of atomic coordinates previously 
described (Hauptman & Karle, 1957). The significance 
of (3-6) is due to the fact tha t  in evaluating (3.2) from 
(3.3) and (3.4) it is not necessary to obtain an explicit 
expression for P($o, ~ . . . .  , ~m). I t  is sufficient merely 
to evaluate the averages in (3.6) where, for space 
group P1, the $~ are given by (3.7). For  the other 
space groups the appropriate functional forms for ~, 
are well known. 

An alternative evaluation of the q function may be 
given by means of the Bessel function expansion of 
the exponential which appears in (3-3) (Watson, 
1945, p. 22). In this way we may check the q function 
as obtained by means of the mixed moments (3.6). 

3"1. The distribution P(Xo, X1, X2) of Ek, Ehl+k, Eh2+k 
As a typical illustration of the procedure we derive 

next  the joint probability distribution P(Xo, X1, X2) 
of the three normalized structure factors Ek, Ehl+k, 
Eho+k, where h 1 and h 2 are fixed vectors and k ranges 
uniformly over all the vectors in reciprocal space. 

First  the 49 non-vanishing mixed moments/t~0;.1~ v 
2 < ;t 0+;q+22 < 6, are computed. We find, for ex- 
ample, 

ff~l~ = 2~< c°s3 2z~k. rj cos 27~(h1Tk ) , rj 

×cos  9 2~(h~.+k).r. , .>k. (3.1-1) 

/z3~9. = 12 cos 2~h 1. r j+6  cos 27~(hl-2h2).r) 

+2 cos 2~ (h l+2h2) . r j .  (3.1-2) 

Substituting the values of the 49 mixed moments into 
(3.4) we obtain q(xo, xl, xg.), from which we find, after 
a tedious computation, log q(xo, Xl, x2) by means of 
the Maclaurin expansion 

~x2+ ~x 3 (3-1.3 l o g ( l + x ) = x - ~  ~ - . . . .  
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We then use 

and 

. v / 2  , v / 2  

~" log q(x o, x~, x2) = log II  q(xo, x~, x2) (3"1"4) 
j = l  j = l  

~'/2 / ~v/2 \ 
11 q(Xo, x~, x2) ---- exp (log II q(xo, x~, x~)) (3.1.5) 

]=1 

A'12 
to obtain the following expression for 1I q(xo, Xl, x2) : 

i=1 
.V/2 
//q(xo, x~, x2) = 

~=1 

.~. 2 1 2 2 Eh~ E h 2  Ehl - -h2  \ exp -2~0-~-~1-~.-~-i~ ~o~-~-i  ~oX~---Ni ~ )  

1 4 ~ 4 1 ( x ~ +  22 2 × 1--ff-~ (Xo+X~+z.~)--2-~ XoX2+X~X2) 

E h l  3 3 Eh2  8 8 Ehl- -h~ 
2/¥8/.z ( Z o Z I ÷ X D Z 1 ) - - 2 ~ ( X o X 2 ÷ X o X 2 )  2_~3/2 

X (X3X2÷XlX32) E 2 h l  2 2 E2h2 2 2 ~W~2h1--2h2 2 2 
- - 4 ~  X O X l - - 4 ~  XoX2 4 I  3/2 XlX2 

- / 

IEh~ 2h2 Eh~ \ 2 1 - 

4 2  2 4  4 2  2 4  4 2  2 4  2 2 2 2  1 (XoX~+XoX~+XoX2+XoX2+XlX2+XlX~)-N-- 2xoxlx2 
2N ~ 

1 
+Tgg~  (x~ + ~ + x~) 

1 6 2  2 6  6 2  2 6  6 2  2 6  
÷ ~ (X0Xl ÷ X~t~ 1 ÷ X0X 2 ÷ XoX 2 ÷ XlX 2 ÷ ~  lX2) 

9 4 4  4 4  4 4  + ~ (XoX~ + XoX2 + xlx2) 

5 4 2 2 9. 4 2 2 2 ~ } + ~ (XoX~X2 + XoX~X2 + XoX~X~) + . . . .  (3.1.6) 

Finally, substituting from (3.1-6) into (3.2), we obtain, 
after an extremely lengthy analysis, the desired 
probabili ty distribution: 

P(Xo, X~, X2) = 1 ( ½ ~ Ai]Xi_IX]_ll (2~)312Dw2exp -- i,S=I / 

1 4 4 x I-~-~[21-14(X~+X~+XT)+(Xo+X~+X2 
2 2 2 2 2 2 + 4XoX1 + 4XoX2 ÷ 4X~X2] 

1 
4N3/2 [ (E2h~ + E2h~ + E2h~_2h~)-- (E2,,~ + E2,,2)X~ 

- (E2h~ +E2hl--2h2) X ~-  (E2h~+E~hi-2h2) X 29. 

÷ (20Eh~- -2EhI_2h2)XoXI÷  (20Eh2--2E2h~-h2)XoX2 
3 3 20E 2E X X  4E X X  ÷ X X  0 ÷ (  hl--h2--  hl-i-h2) 1 2--  h l (  0 1 0 

--4Eh2 ( X~X~. ÷ XoX]) --4Ehl_h~ " ( X3X2 ÷ X~X 3) 

2 2 2 2 2 2 + E2h~XoXI + E2h2X'~2 + E2h~-2n~XIX2 
_ 2 X (4Eh~_h2--2Eh~+n2)XoX1 2-- (4En2-2E2h~_h2) 

× XoX~X2- (4E~ 1- 2Eh~_~h~)XoX~X~] 
1 

L¥-~--  2- k h 1 ~ h2 ~ hl--h2! 
+~_~r153 ~ E  2 ± E  2 ± E  2 

+ ~(Ehfihl_~,,~+ Eh~E2,,l_,,~+ Ehl-h~Ehl+h~) 
- ( ~ -  3 (E~,~+ E~2)+ ½ (EhlEhl_2h2+ Eh2E2h~_h2 

÷ Ehl_h2Ehl+h2))X~ 
2 E 2 (195 3(Ehl+ hl-h~)+½(E- E - -  \ - - ~ - -  Ul h1--2h2 

+ Eh E2h~_h2 + Ehl_h Eh~+h ~))X~ 

(195 3/E2 ~E2 ~+½(Eh~Ehl 2h~ -- \--~--- k h2 ~- hl--h 2! 

÷ E h 2 E 2 h , _ h  2 ÷ E h l - h 2 E h l + h .  2))X22 

E 

- ½Ehl (4E2hl + E2h2 + E2hl_2h2))XoX1 

+ (-} EhlEh ÷   - - }  

- ½Eh2 (E2hl+ 4E2h2 + E2hl_2h2))XoX2 

+ (-} Eh ~Eh~ ---} Eh ~E2 h l--h 2-- ~ E~ E ~ _  2h2 

- ½Eh ~_h~ (E2h~ + E2h2 + 4E2hl-eh2))X~X2 
(~45 ~ ~. 2 4 545 ~E 2 , E  2 ,~X 4 +~i-~-2(Eh~WEh2))Xo+(i-~-½~ hi "j- hl--h2)) 1 

(545 1 { ~ 2  2 4 
+ ~-65- 2 ~h~ + Eh~-h2))X~ 

+ (½EhIE2,~ + En~ (½Eal+n2- Ehl-h ~) )X~oX1 

+ ( ½-Eh~E2n~ + Ea~_h~ (½E2h~-n2-- Eh2))Xoi~ 
1 1 _ + (~En2E2n2+ EnI (~En~+h~-Eh~ h2) )XaoX2 

÷ (½Eh2E2h 2 ÷ Ehx_h  2 (½Eh~--2h2-- E h ~ ) ) X o  X3 

+(~E,_ . E ÷Ehl(½E2hl_h2--Eh2))X31X2 . -  ~al-n 2 2hl--2h2 

÷ ( ½Ehl-h2Euhi-~.h2 ÷ Eh 2 (½Eh~--~h2-- En~))XIX~ 
/59 5E2 1E2 1E2 . 1  E 
~--~- - -~-  hl --  2- h2 --  ~- hi_h2 -I- -~Eh2 2hl_h2 

1 2 2 ÷ ~Eh~-h~Eh~+h2)XoX~ 

+ (~-½E~--}E~2-1-E~_h2 + ½Eh~Eh~-2h2 
1 2 2 + ~En~_h2Eh~+h2)XoX2 

+ ( ~ _ 1  2 ~E 2 5E 2 ±½Ehyh~_2h~ ~ E h l - -  ~ h2---  ~- hl_h2 ] 
2 2 + ½Eh2E2hl_~)X~X2 

E ÷ ( - - -~-EhlEh2 ÷ E h l E 2 h l - h  2 ÷ Eh2  hl--2h 2 

÷ ½Eh~--h ~. ( E 2 h l ÷  E2h2) )X~XIX2 

5 E 

2 
÷ ½Eh 2 (E2h~ ÷ E2h~_2h2))Xoi lX2 

5 + ( - TEh~Eh~-h2 + E~2Eh~+h2 + Eh ~_h2E2h ~--h2 

+ ½Eh~ (E2h 2 + E2h~_2h2))XoX~X] 
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4 2 2 4 4 2 6 6 6 ~ (XoX~+XoXI+XoX ~ s3 (Xo+X~+X~)_ ~ 
288 

2 4 4 2 2 4 +XoX2+X~X.z+X~X2) ~ y2~:~r~ 
1 8 8 8 +i~(Xo+X~+X~) 

÷ 1 ~  6 2 2 6 6 2 2 6 (XoXI+XoX~+XoX2+XoX2+XOX~+X~X2)2 6 
÷ 6 - ~  4 4 4 4 4 4 (XoX~ + XoX 2 + X~X2) 

5 4 2 2 2 4 2 2 2 4 
÷ ~ - ~ ( X o X 1 X  2 ÷ X o X 1 X  2 ÷ X o X 1 X 2 )  ] ÷ . . .  , 

(3.1.7) 
where 

1 2 ~ 2 2 
D = 1-~r (Ehl+Eh~+EM-h~) +--N-~2EhlEh2Ehl-h2, 

) A n = ~ 1 -  E~l_h~ , 

1 /  E h l  Eh2~_~hl_h~ ) 
A~ = A~ = .~ ~-~57~-~ 

1 (_ Eh2 , Ehl~hl_h2 ) 
A13 = A~ = ~ \ i1 /2 ,  

1(1)  
A~2 = ~  1 -  E~h~ , 

1 [ Eh~--h~ Eh~Eh~\ A~  = Aa2 --- D ~ ~ + - - - N - - ) ,  

1 1 
A~a = ~ (1--~Eh~) • 

The remaining probability distributions are derived 
in a similar way and are listed without further proof. 

3-2. The probability distribution P(Xo) of E k 

P(Xo ) = 1 { 1 exp (-½Xo ~) 1 -~-~ (3-6Xo ~+Xo ~) 

1152N 2 1  (15 + 900Xo~- 930X~ + 188X~- 9Z~) + . . . .  } 

(3.2.1) 

3"3. The probability distribution P(Xo, Xx) of the pair 
Ek, Eh+k where h is fixed 

1 
P (X  o, Xx) = 2:~(1-E~/N)½ 

x exp(  1 EhXoXI+X~)){1 2(1-E~/N) (X~- 2 ~-~ 

1 5 5 2 2 ---- +4XoXI÷X1) ] N[~--~(Xo+X~)+~(x ~ ~ ~ 

' 
N3/2 (1 2 2 e 2 

"3 

+ E h (4XoX 1 - X~X~ - XoX~) ~ 
d 

1 2 
(Xo+Xx) - ~ )  ~ [ \ - ~ - - ~ / -  (~Eh 

1 2 5 4 4 5 2 7 5 ~ y 2 y 2  -t- (~E h --5-) (Xo + X1) ÷ (~-Eh 16'-'o'" 1 
65rr6~_X 6) 4, 4 2 2 4 +~(XoXI  + XoX1 ) 1 s s - i -~(Xo + X~) + 288 , , ~ 0  - 

1 6 2 2 6 9 ~(4 ~(4 f6 (XoXI+XoX1)-~-~o-~I 

+ EhE2h (2X°X1-~XaX1--~X°X~)] + " "  }'(3.3.1 ) 

3.4. The probability distribution P'(Xo, X1) of the pair 
E k, Eh+2k where h is fixed 

1 { E2h 
(-~Xo-½X1) 1 - -2~  P'(Xo, X~) = ~ e x p  ~ ~ ~ (x~-x~x~) 

1 (6_6X~)_6X~÷X~+X4) + }. (3.4.1) 
8N "'" 

4. The average values 

4.1. The average value of I Ekl p 
In order to compute the expected or average value 

of IEkl p we employ 

<lEklP>k =- l X o l P P ( X o ) d X o  , (4"1-1) 

where P(Xo) is given by (3.2.1). In this way we 
derive (2-1.1). 

4-2. The average value of IEklP]Eh+k[ q 
:Now we use 

f L, o <lEklPlEh+klq>k =- PIXIIqP(Xo, X1)dXodX ~ , 
.-oo 

(4.2.1) 

where P(Xo, Xx) is given by (3-3.1). Evaluation of the 
resulting double integrals finally yields the desired 
formula- 

2(P+q+ 2)/21-' (P2  1) 
< l E k l P l E h + k ] q > k  - 

8N [P(P--2)+q(q--2)--4pq(E2h--1)]-- Pq 

1 [~pq(p-2)(q-2)E~ + ~  

~6 pq(p2 +4pq +q2--6p--6q)E~h 

+ ~-~2p(p--2)(p--4)(9p+ 10) 

+ ~-~52q(q--2)(q--4)(9q+ 10) 

+~-ipq(4p2+9pq+4q~'-lOp-lOq--28)]+...}. 

(4-2.2) 

4"3. The average value of IEkl'[Ehl+klqlEh2+k] ~ 
Employing 

<lEklP[Ehl+k[q[Eh2+h[r>k = 

S ~_~ f ~ f  _~ IXoIPIXIIqIX~[rP(Xo'XI'X2)dXodXIdX2 ' 
(4.3.1) 
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where P (X  0, X 1, Xe) is given by (3.1-7), and evaluat- 
ing the resulting triple integrals, we finally obtain 
after a very lengthy computation 

(IEk[P[Ehl+k]q]Ehe+kl~>k 

2 (p+q+r+3)/e(27~) 3/2 (p ;1)__  (q2 1) (r2  t 
1 

8N [ P ( P - 2 ) + q ( q - 2 ) + r ( r - 2 ) - 4 p q ( E ~ l - 1 )  

-4pr(E~2-1)--4qr(E~l_h~-- 1)] 

1 
4N3/., " [pqEeh~ + prE2h2 + qrEehl-eh~ 

- -  4pqrEhlEh~Eh~ - h2] 

1 [2_~pq(p_2)(q_2)E~ ~ + ~ p r ( p _ 2 ) ( r _ 2 ) E ~  
+SN-~ 

+ ~ qr ( q -  2 ) ( r -  2 )E~_h2 +-~ pqr (p - 2 ) E~,~E~ 

+ 1 pqr (q - 2 )E~ 1 E2 ~-hu -{- 1 pqr ( r -- 2)E~aE ~ ~-h~ 

_ ~ pq (p~ + qe + r e + 4pq + 4pr + 4qr-- 6p -- 6q-- 2r)E~ 

- ~ pr (p~ + qe + r e + 4pq + 4pr + 4qr -  6p - 2 q -  6r)E~ 

~-~ qr (pe + qe + r ~ + 4pq + 4pr + 4qr 

--2p--6q--6r)E~_h~ 
+ ~-i~p(p--2)(p--4)(9p+ 10) 

+ ~-i~q(q--2)(q--4)(Uq+ 10) 

+ ~l-i~ r(r--2)(r--4)(9r + 10) 

+ 1 pq (4pe + 9pq + 4q e -- lOp - -  1 0 q  - -  2 8 )  

+ 1 pr (4p e + 9pr + 4r ~ -- 10p -- 1Or -- 28) 

+ ~ qr (4q e + 9qr + 4r e -- 10q-- 1Or -- 28) 

+ ~ p q r ( 5 p + 5 q + 5 r  + 2) 
1 pqr(EhlEh~-eh~ + Eh~Eehl-h~ 

-~-Ehl_h2Ehi+h2)]+... } . (4"3"2) 

4"4. The average value of EkEh+k[EklP]Eh+kl q 
In order to obtain this average we make use of 

(,EkEh+k IEk]P[Eh+klq)~ 

f 12 o 1 = [XolPlXl[qP(Xo, X1)dXodX1 ,  (4.4.1) 

where P ( X  o, X1) is given by (3.3.1), and find 

(,EkEh+k[EklPlEh+klq~k 

2 (p+q+6)/2 ' (q-~3) Eh 

8N [ p ( p - 2 ) + q ( q - 2 ) - 4 ( ½ E ~ -  1)pq]+ . . . .  

(4.4.2/ 

4.5. The average value of 

[EklPlEhl+klq[Eh~+klrEhl+kEh2+k 

This average value is obtained from (3.1.7) by 
means of the integral 

f S2f _~  _~ IXolPiXl lqlXel 'Xl  x~. 

×P(Xo, X1, X e ) d X o d X l d X  e , (4.5.1) 

and is found to be 

(~[Ek[PlEhl+k[q[Eh2+k]rEhl+kEh2+k~>k 

pEhlEh~ pEhl+h2 
N 2N 3/2 

+ ~  [~- (pq +q r +p  + q)E~l+ ~-(pr +zr +q + r )E~ 

+-~ (4qr + 3q + 3r)E~,~_h2-- ~ (p2 + qe + r e 

+4pq+4pr+4qr+6p+2q+2r)]+.  . . } .  (4.5.2) 

4.6. The average value of IEklPIEh+eklqEh+ek 
We obtain this average in the usual way by means 

of P ' ( X  o, X1), as given by (3.4.1), and find 

(~]Ek[P]Eh+ ek[qEh+ 2k)k 

-- 47~N Eh 2(P+q+4)/2PF(P2-~I)-F(q~3) + . . . .  (4"6"1) 

5. Proof  of the basic  formulas  

Equation (2.1.2) is proved by means of 

(, ([EkIP- [ElP ) ([Eh+k[ q-  ]E[q) )k 

= (,[Ek[P]Eh+klq)k--(,lEklP)(,]Ek[q), (5"1) 

where [E[ p means ([Ek[P)k . Employing (4"2"2) and 
(2.1.1) to compute the right side of (5.1), and solving 
for Eeh, we obtain (2.1.2). Equation (2.1.3) is obtained 
in the same way by making use of (4.3-2), (4.2.2), 
and (2-1.1). Again, (2.1.4) is an immediate consequence 
of (4.6.1) and (2.1.1). The theoretical value for the 
denominator of (2.1-4) has been replaced (using (2-1.1)) 
by the average there shown in order to permit aver- 
aging over the restricted values of k for which the 
signs of the Eh+2k are known. Since these IEh+ekl are 
generally large, and always greater than zero, the 
possibility exists for using negative values of q (greater 
than - 1 )  in (2-1.4). In a similar way, (2.1.5) follows 
from (4-5.2) and (2.1.1). Finally, (2.1.6) is an im- 
mediate consequence of (4.4.2) and (2.1.1). 

Equation (2.1.3a) is obtained from (2.1.3) by means 
of the substitution h = h 1 = - h  e, while (2.1.4a) fol- 
lows from (2.1.4) by replacing h by 2h and k by 
- h - k .  

6. Proof  of the integrated formulas  

The basic formulas are valid for every set of non- 
negative values for p, q, r. I t  is to be expected that  
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the use of several different sets of values for p, q, r 
would in general be better than the use of a single 
set of values. However, using many different sets of 
values for p, q, r would result in a formidable com- 
puting problem. Therefore, a great advantage accrues 
by integrating the basic formulas for values of p, q, r 
from 0 to t. The reason for this is that  each integrated 
formula is equivalent to computing the related basic 
formula over all possible combinations of values of 
p, q, r in the range from 0 to t. I t  is advantageous to 
use as large a value of t as the accuracy of the ex- 
perimental data warrants. 

In order to prove the typical integrated formula 
(2.2.2) we multiply (2.1-2) by 

integrate between limits 0 to t for p and q (using 

I a~dx and solve for E2h. The aX/log a),  remaining 

integrated formulas are derived in the same way, 
where reference should be made to Table 1. 

7. An important  identity 

In space group P1 a simple identity among the struc- 
ture invariants (equation (4.13), Karle & Hauptman, 
1957) had important application in phase determina- 
tion. Here, too, the corresponding identity is found 
to have important practical application. 

We consider the four structure invariants 

bl = (Phi ~-(~h2 '~(~hl-h2 , i 

52 = ~)Ul -~-~U3 "~-(~Ul--U3 ' / (7'I) 
ba = ~h~ ÷~9h3 ~-~9h2-h3, 
b 4 =- (~hl_h2-~-(Phl_h3-~-(Ph2_h3 , 

where, for example, q~hl is the phase (either 0 or re) 
of the normalized structure factor Ehl. I t  is then easily 
verified that  

bl +b~. + b3 +b 4 = 0 (7.2) 

provided that  the sum is reduced modulo 2z. In terms 
of the normalized structure factors the relation (7.2) 
becomes (replacing h a by k') 

EhlEh2Ehl_h2 -- 

( EhlEk'Ehl-k' ) ( Eh~Ek'Eh2-k' ) ( Ehl-h2Ehl-k'Eh~-k' ) 
E 2 b-~2 b-72 

k'-W hl--k'1-u h2--k" 
(7-3) 

Summing (7.3) over all vectors k', we obtain the 
important identity 

EhlEh2Ehl_h2 

( EhlEw Ehl-W ) ( Eh~Ek'Eh~-W ) ( Ehl- h~Ehl-w Eh2-W ) 
k" 

Y E 2 ~ E 2 k'~hl--k" h2--k" 
k' (7"4) 

where it is to be emphasized that  the three factors 
(in parentheses) in the numerator of (7.4) are in- 
dependently computed by means of (2.2.3). Thus (7.4) 
is to be regarded as a valuable supplement to (2.2.3). 

In the case that  the structure consist of N identical 
point atoms and that the data are very extensive and 
accurate, (2-2.3) and (for each k') (7-3) will yield 
reliable values for EhiEh~Ehl_h2. In practice, when the 
atoms are not all identical and the data are limited 
and subject to experimental errors, it is to be expected 
that (2-2.3) and (7.3) will yield values which are 
distributed about EhIEh~Eh1_h2. In this case the fun- 
damental identity (7.4) will give an improved value 
for EhlEh2Eh1_h2. 

8. Procedure for phase determination 

The integrated formulas (2.2.1)-(2.2-6) and (7-4) are 
an improvement over the corresponding basic formulas 
(2.1.1)-(2.1.6). They provide the basis for a procedure 
for determining the value of every phase when only 
the magnitudes of the structure factors are kno~m. 
However, if desired, the basic formulas may be used 
instead of the integrated formulas. I t  is readily seen 
that  the basic formulas include as special cases all 
previously known formulas for phase determination. 
Minor modifications required when the structure con- 
rains unequal atoms are suggested below. 

Initially only formulas (2.2.2)and (2-2-3a) (or 7-4 
with h2 = - h i )  are available for determining phases, 
since these are the only ones which require a knowledge 
of the magnitudes, and not the signs, of the structure 
factors. Evidently (2.2.3a) and (7.4) are the most 
powerful formulas available for determining the signs 
of the E~,u, especially if E~ is large. In (2.2.3a), as in 
the other formulas, t may be an arbitrarily chosen 
positive number. However, the larger the value of t 
the more reliable the resulting formula will be, as- 
suming a sufficiently large number of perfectly ac- 
curate data. Therefore the value of t to be chosen in 
practice is the largest value compatible with the 
accuracy of the experimental data. I t  is suggested that  
with an average error of about 20% in the observed 
intensities, values of t equal to 3 or 4 may be suitable, 
whereas with an average error of 10% or less, t = 5 
or 6 may be preferred. The value to be gained from 
more accurate data is clearly indicated by these 
formulas. 

In (2.2.2) and (2-2.3a) as well as in the remaining 
phase-determining formulas, the averages M, ]El p, 
etc. are those computed from the available experimen- 
tal data rather than the theoretical averages given by 
(2.2.1) and (2.1.1). Small differences between the 
theoretical and computed averages, owing to the 
limited number of data, experimental errors, etc. are 
to be expected. I t  is anticipated that  the use of the 
experimentally determined averages instead of the 
theoretical ones will compensate somewhat for the 
limitations inherent in the experimental data. As soon 
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as the signs of several of the E2h have been deter- 
mined, (2.2.4a) and (2-2.6) may be used to determine 
the signs of others. 

As is well known, the signs of three large structure 
factors, constituting a linearly independent triple 
modulo 2, are to be specified arbitrarily in order to fix 
the origin uniquely. Denoting by Ehl any one of these 
three, (2.2.3), (7.4), and (2.2.5) are available for 
determining the sign of any structure factor Eh~ which 
is linearly dependent modulo 2 on Ehl. These formulas 
require a knowledge of the signs of many of the E2h, 
which signs will have already been obtained as in- 
dicated in the previous paragraph. In  using (2.2.5) the 
averages are to be taken over all vectors k congruent 
modulo 2 to h 1 or h~. 

Once the signs of a sufficiently large number of struc- 
ture factors, linearly dependent modulo 2 on one of 
the three large origin-determining structure factors, 
have thus been found, (2.2.6) will be useful in deter- 
mining the signs of the remaining structure factors. 

In the case that  the structure consist of N atoms 
per unit cell not all identical, then N in (2.1.2)-(2.1.6) 
and (2.2.2) to (2.2.6) is to be replaced by (r3Qr921 3, where 

N 
~.~ =2;  z] (8.1) 

i= l  

and Zj is the atomic number of t h e j t h  atom. Evidently 
3 2 az/a3 reduces to N in the case tha t  all atoms are 

identical. Equations (2.1.2)-(2.1.6) and (2.2.2)-(2.2.6) 
then no longer have exact, but  merely probable, va- 
lidity. However, this mat ter  has already been discussed 
elsewhere (Karle & Hauptman,  1956) and we may 
conclude that ,  in general, for centrosymmetric struc- 
tures this limitation will have an adverse effect on 
only some of the smaller E's. Thus the introduction of 
(8.1) together with the identi ty (7.4) makes unim- 
portant  the effect of unequal atoms in phase deter- 
mination. 

I t  is to be noted that  (2.2.3) and the special case 
(2.2.3a) play a central role in the procedure for phase 
determination in tha t  they are sufficient to determine 

the phases of all the structure factors. The remaining 
formulas constitute a valuable adjunct to these. In  
practice the identi ty (7.4) will be a useful supplement, 
especially in the case tha t  the structure consists of 
unequal atoms. 

9. Concluding r e m a r k s  

In  this paper joint probabili ty distributions of one, 
two, and three structure factors have been obtained 
on the basis tha t  the crystal structure is fixed and the 
indices range over vectors in reciprocal space. They 
have led to main formulas (2.1.3) and (2.2.3) as well 
as several auxiliary ones. These, together with the 
identi ty (7.4), yield an improved procedure for phase 
determination. 

Joint  probability distributions of four or more 
structure factors may be found by the methods 
described in this paper. They should lead to new 
phase-determining formulas whose usefulness is yet  
to be decided. 

The mathematical  analyses in this paper are ex- 
tremely long and tedious and have been given here 
only in barest outline. We hope to present these 
details in a new edition of our Monograph I. 
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